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On plane flow of a gas with finite electrical 
conductivity in a strong magnetic field 

By M. D. COWLEY 
Department of Engineering, University of Cambridge 

(Received 13 September 1962) 

The principal object of study is plane flow over bodies with a sharp apex at 
Mach numbers greater than unity. The magnetic field is assumed to be uniform, 
rectilinear, and parallel to the undisturbed stream. Flow behaviour near the 
apex of a wedge is investigated by the method of characteristics. It is found that 
for small wedge angles an attached shock attenuates initially with distance from 
the apex, but for larger wedge angles the shock grows stronger. 

The structure of a slow magneto-gasdynamic shock is investigated for the 
case of strong magnetic field and small electrical conductivity. The streamlines 
are displaced within the shock although the initial and final flow directions are 
the same. An ordinary gasdynamic shock may occur on the upstream side of the 
transition. The shock structure theory gives a solution for the flow near the apex 
of a certain class of bodies. 

For the study of slow shock structure, it is shown that the transition is described 
by a curve in the (P, H)-plane. P is the sum of pressure and momentum flux in 
the direction of variation; H i s  the sum of enthalpy and kinetic energy due to the 
velocity component in the direction of variation. General properties of the 
(4 H)-plane are found for a gas whose equation of state obeys the conditions 
of Weyl(l949). Flow behaviour on the transition curve is then determined. The 
theory of the ( F ,  23)-plane can be used in the study of other one-dimensional 
processes in magneto-gasdynamics. 

1. Introduction 

presence of a strong magnetic field. Conditions approach the formal limit 
The present paper discusses some aspects of the steady flow of a gas in the 

b/a -+ 00 with v/a = O ( l ) ,  (1) 

where 0 is the Alfv6n wave speed, a the sound speed and v the gas velocity. 
The effects of viscosity, heat conduction and radiation are neglected, but those 
of electrical resistance are not. 

We shall consider plane two-dimensional flow over a body with a sharp apex. 
The upstream flow is assumed to be uniform, have a Mach number greater than 
unity, and be parallel to a uniform magnetic field. We shall in fact consider a 
magnetic field which is uniform throughout the flow, justifying the assumption 
by the following arguments. The limit (1) implies that the magnetic pressure, 
B2/2,u in M.K.S. units, approaches an infinite value in comparison to the pressure 
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or momentum of the gas. If the magnetic field were to be perturbed significantly 
by currents within the gas, magnetic forces would be of the order of changes in 
magnetic pressure. There appears to be no means by which such forces could be 
supported, and so we assume that gas currents can be neglected when determining 
the form of the magnetic field. In  any flow problem the magnetic field can be 
considered as known. It must have the form of a free-space field, and in particular 
it could be uniform and rectilinear. 

For a steady plane flow where the free stream is parallel to the magnetic field, 
the electric field is zero. Currents are induced in the gas only when there is 
motion across the magnetic field lines. The resulting magnetic forces tend to resist 
this motion with an effectiveness measured by the magnetic force coefficient 

CM = gB21/pV, ( 2 )  

where 6, I and p are typical values of the electrical conductivity, length scale and 
density. When C, + 0, magnetic forces are negligible in comparison to typical 
inertial forces, and flow behaviour is similar to that of ordinary gasdynamics 
(non-conducting flow). Thus for C, -+ 0, it is known that there are realistic 
steady-state solutions with the condition of uniform upstream flow which we have 
assumed. In  the present work we shall be considering flow over bodies for which 
there is an attached shock at the apex when C, --f 0. For small but non-zero 
values of C, it  is reasonable to suppose that the flow pattern is not greatly 
affected, and flow deflexion at  the apex is still given by a shock. 

However, an attached shock is not likely to occur for all values of C,. When 
C;, + cu, motion across the field lines must be reduced to a negligible drift for 
the scale considered, and the gas is effectively channelled by the magnetic field. 
A body will act as a stopper to a channel with the same thickness as the body 
thickness, provided that there are no currents within the body to perturb the 
field. The gas in the channel must be at  rest relative to the body. As will be clearer 
from the discussion of wave motion given below, the starting process to achieve 
this type of flow could be readily given by the one-dimensional propagation of 
shock waves in the magnetic channel. When C, is large but still finite, the drift 
velocity across the channel must be of order l/CAf times the free-stream velocity, 
and mass conservation requires the gas to be virtually at rest for a distance of 
order C,, times the body thickness. Clearly there is some restriction, as yet un- 
known, on the value of C, for which an attached shock is possible. This point 
will be discussed again at  the end of the paper. 

It will be noted that the magnetic Reynolds number RIM has not been mentioned 
so far. The arguments for assuming a free-space form for the magnetic field rested 
on a discussion of typical forces, and remain valid whatever the value of RIM. 
However, equation ( 2 )  may be written 

C, = RMb2/v2, 

and, with R;, + 0, C, + GO in the limit given by equation (1). Thus the flow 
should be effectively channelled by the magnetic field for all non-zero values of 
RM, and the parameter is not significant. This point is of interest since flow 
experiments at  high R;, are difficult to achieve, whereas a reasonable range of 
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CAM values are available under typical conditions obtained in a combustion-driven 
shock tube. The present study in fact arises out of experiments on the flow over 
axially symmetric bodies which are being made in a shock tube. Strictly the limit 
(1)  cannot be approached very closely under the experimental conditions, but it 
does constitute a useful idealization which may lead to a better understanding 
of more general flows. In  the same spirit we have chosen a plane geometry here 
rather than the analytically more difficult one of axial symmetry. An approxi- 
mate analysis for the flow near the vertex of a cone with an attached shock and 
with similar upstream conditions has been given by Barthel & Lykoudis (1961). 
Their approximations were based on the hypersonic assumption of a thin shock 
layer, but a more general analysis is readily given for the flow near the apex of a 
wedge, and this is done in $4. Another idealization of the present work is the 
neglect of Hall effect, although in practice it is difficult to reproduce strong- 
field conditions where this neglect is justified. 

The strong-field limit (1) has been presented in terms of wave speeds, but so 
far the significance of the wave speeds as such is not obvious. The behaviour of 
waves in a gas of infinite conductivity has been studied by Lighthill (1960) for 
the limit b/a -+ 00. Of the three magneto-gasdynamic modes, the Alfvh mode is 
not significant with the assumed plane geometry since it requires transverse 
field and velocity components. The fast mode proceeds with speed b in all direc- 
tions and carries magnetic and electric field perturbations. The gas must move 
with the magnetic field, but under strong-field conditions the effects of gas inertia 
are only important for large accelerations, and hence the speed of propagation is 
high. The slow mode proceeds one-dimensionally along the field lines at the sound 
speed a. Lighthill interpreted the slow mode as the propagation of sound waves 
in rigid magnetic channels, magnetic forces strong enough to prevent lateral 
motion always being possible. Lighthill also suggested that disturbances created 
by a body moving at  moderate speeds would be propagated by the slow mode 
only. 

With finite conductivity, we may expect a more rapid spread of magnetic- 
field perturbation in the fast mode, since the gas is not so strongly tied to the 
field lines. In  the slow mode there will be some propagation of disturbances 
perpendicular to the field lines. Consider a particular starting process which 
might lead to the type of steady flow that we are assuming. The gas is at rest 
relative to the body, and the magnetic field is uniform and steady. Motion of 
the gas is initiated by the passage of a strong shock in the direction of the field 
lines, e.g. shock-tube flow. The magnetic field will remain effectively unperturbed 
throughout the starting process for the limit b/a --f co, provided that there is 
no mechanism external to the gas that will affect the field directly, e.g. a time- 
varying current in an external conductor. Transient electric fields could have an 
important influence in general, but they may be taken as effectively irrotational 
during the starting process. In  the present case, the electric field will be zero 
throughout, provided that the flow remains plane, and the boundary conditions 
on the electric field are such that no potential differences can be supported. Then 
it will be necessary only to consider a modified slow-mode propagation. 

With zero electric field and constant magnetic field, Ohm’s law shows that the 
37-2 
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current density, and hence the magnetic force density, at a point will depend only 
on the gas velocity and conductivity at that point. The magnetic force term in 
the equation of motion does not contain velocity gradients, and thus electro- 
magnetic effects are localized during the starting process. Although disturbances 
in the slow mode may spread in a direction perpendicular to the field lines when 
there is finite conductivitiy, the basic mechanism for their propagation will still 
be the sound-wave mechanism of ordinary gasdynamics. A weak front may be 
attenuated by the action of magnetic forces, but it will proceed at speed a. 
From these arguments it appears that the range of influence of a point in steady 
continuous flow should be bounded still by the Mach lines through the point. 
The higher the conductivity the weaker the influence becomes in a direction 
perpendicular to the field lines, but the range remains the same. Only when the 
influence is reduced to negligible proportions with high conductivity can we con- 
sider the range to be altered, i.e. to a strip of infinitesimal thickness aligned with 
the field but lying downstream of the point. Thus the significance of the sound 
speed is in some respects similar to its significance in ordinary gasdynamics. 

Throughout the following work we shall always refer to the flow Mach number 
being greater or less than unity when v > a or v < a. The terms subsonic and super- 
sonic are used in a special sense in $55 and 6. 

There is one further simplification to the flow problem with the conditions we 
have assumed. When the electric field is zero, the stagnation enthalpy is constant 
along streamlines, heat conduction, radiation andviscous effects being neglected. 
Since the upstream state is assumed to be uniform, we have 

grad (h  + +w2) = 0, 
where h is the enthalpy. 

(3) 

2. Thermodynamic relations 
Given equation (3) and thermodynamic equilibrium, it is convenient to have 

an equation of state in the form 
P = f(k PI .  

Introducing the thermodynamic property yh, defined by 

we can obtain the differential form of equation (4) as 

a2 
dp = ' h - l p d h t - d p ,  Y h  Yh 

yh  is related to the ratio of specific heats yT, and the isentropic index y by 

Yh(aP/aP)h = YT(aP/aP)* = Y P / P  

(4) 

(7) 

When p / p  and h are functions of the temperature T only, we have yk = yT = y .  
In  general, 

if the conditions of Weyl(l949) are assumed. 
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For the ideal partially ionized gas discussed by Goldsworthy (1961) 

where 6 is the degree of ionization, and Ti is the characteristic temperature of 
ionization. Typical values on a combustion-driven shock tube with Argon as 
the working gas are < = 0.12, TIT, = 0.06, and yh- 1 = 0.056. 

For the purposes of some calculations we shall take the limit TIT, + 0, fl  $: 0. 
The appropriate equation of state is given by 

(P/P)T,Ti  +. 0 + const., (10) 
since it is readily shown that h, and hence t and T, remain constant. The limit 
can be taken formally from more general analysis by setting yh = 1, a2 = const. 
In  the context of shock-tube flows the adoption of the above simple ( p ,  p)-relition 
implies that the energy equation is no longer strictly satisfied, but the approxi- 
mation is hardly worse than that of neglected radiation. 

3. Vorticity creation at shock waves 
An ordinary gasdynamic shock with no change in magnetic field across it is a 

possible flow feature if RIf and C,,, with length based on shock thickness, tend 
to zero. The change in flow velocity will in general imply a sudden change in the 
current density and hence in the magnetic force on the gas. The action of the 
magnetic force can be such as to impart rotation to fluid elements, and vorticity 
is created. 

Suppose that the co-ordinate system (xs, ys, x )  has the xs-axis coinciding locally 
with an outward normal on the downstream side of a shock, the z-direction being 
perpendicular to the flow and magnetic field plane. From the momentum equation 
for an inviscid fluid we have 

where the square brackets denote the jump in the quantity enclosed, w2 is the 
vorticity, and we have used the fact that mass flow is conserved. The second term 
on the left-hand side of equation (11) is familiar in ordinary gasdynamics. Here 
and in the subsequent analysis, the subscripts x and y are used to denote vector 
components in the x and y directions for the co-ordinate system under considera- 
tion; the extra subscripts on x and y, which are used to distinguish particular 
co-ordinate systems, are dropped. 

For a uniform flow parallel to a uniform magnetic field upstream of the shock, 
equation (1 1) gives on the downstream side 

where B,, po and wo are the magnitudes of the field, density and velocity on the 
upstream side of the shock. Using the result of Hayes (1957) for the creation of 
vorticity due to the second term on the right-hand side of the above equation, 
we obtain ( 1 - q  dP0 

COS P O  - , BO w, = +-j2+vo- 
POVO 6 dYs 
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where e is the density ratio (e < I) and Po is the angle the shock makes with the 
upstream flow. With a shock attached at the apex of a body, the vorticity creation 
of equation (12) represents the initial effect of the magnetic field. If the body is 
wedge shaped, dP,/dy, will be non-zero at  the apex unless the voriticity can be 
accommodated by a purely rectilinear shear flow in that region. In  the next 
section i t  will be shown that there are flows for which d/3,/dyS = 0, but in general 
shocks are curved at the apex of a wedge. 

4. Flow at the apex of a wedge 
We shall investigate the flow near the apex of a wedge by constructing an 

elementary characteristic net. A direct approach to the problem can be made 
from the intrinsic flow equations, as in the analysis of shock curvature in terms 
of streamline curvature in ordinary gasdynamics. The author believes that the 
present method is more plausible since it focuses attention on the way in which 
a point on the wedge behind the apex can influence flow at the shock. 

V 

I 

\ f 

FIGURE 1. Intrinsic co-ordinate system. 

However, it is not obvious that the final algebraic results can be extended 
directly to flow with Mach number less than unity behind the shock if there are 
no singularities in the flow. It may be verified that the results can be so extended. 

If (Xf 3 Yf 9 z)  are the intrinsic co-ordinates at  a point, so that xf is directed along 
the streamline (figure 1), the momentum and continuity equations are 

(13) 

(14) 

apv/axf+pv(ao/ayf) = 0, (15) 

(16) 

Pv(av/axf) + (aP/axf) = -j&, 

Pv2(a8/axf) + (aP/aYf) = j,Bn 

where 0 is the angle between the streamline and a fixed direction. Ohm’s law 
gives j ,  = PUB,. 

By means of equations (3), (6) and (13) the first term of equation (15) can be 
eliminated and we obtain 

pv2(waYf) + ( M 2  - 1)  (aP/axf) = ((Yh - 1) M 2  + qj,B,> (17) 
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where M = vla is the flow Mach Number. For the limit bla --f a, B, and B, can be 
considered as known, and the magnetic force terms depend directly on flow pro- 
perties and not on their derivatives. The equation for any one property must 
then be hyperbolic when M > 1 and have the same characteristic directions as in 
ordinary gasdynamics. The corresponding equations for axially symmetric flow 
were studied by Hains, Yoler & Ehlers (1960). Equation (13) gives directly 

FIGURE 2. Characteristic net near the apex of a wedge. 

where a is the Mach angle and y is the isentropic index of equation (7). Multi- 
plying equation (14) by d q ,  equation (17) by dyj  and adding, we obtain 

sin 201 dp  *-- +d8 = A (B,dxf+B,dyf+fyh-l)M2B,dy~) on - d ~ f  = tana.  
2Y P PV2 dXf 

(19) 
In  general the terms due to the magnetic forces will only be small for a scale such 
that CM is small. 

Suppose that 1 (see figure 2) is a point a t  the apex of a wedge immediately 
behind an attached shock. The characteristics with directions given by equation 
(19) at a point 2 on the wedge surface meet the shock at points 3 and 4 (also shown 
in figure 2) .  Let the extent of the region 124 be small so that C, based on a typical 
length tends to zero. To zero order in C, the shock and characteristics are straight, 
and the flow is uniform. To first order in C, we may apply equation (19) to the 
zero-order characteristics and obtain 

((134 - P,)/2Y,Pll sin 2% + (84 - 81) + (83 - 81) = ( J - ~ l B o / P l ~ l )  [44{COS (a1 + 61) 
- (Yhl - 1) sin 61 cosec al) - S 3 2 ( ~ ~ ~  (a1 - 8,) 
+ (Yhl - 1) sin 6, cosec all], (20) 
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where B is measured to the free-stream direction, B, is the magnitude of the mag- 
netic field, and 824, S,, are the lengths of the characteristics. To this order of 
approximation the magnitude of the perturbations varies directly with the length 
scale, and hence 8 varies linearly along the shock. We can thus relate (8, - 6,) 
and (8, - 8,) to (8, - 03) and the geometry of the figure writing 

~ W P / d ~ ) s / 2 y , P , ~  sin 2% +tan a1 cotP11 (dO/dO, 834 
= jZl B,/p,v: [S,, {cos ( a1 + 8,) - (yhl - 1) sin 6, cosec a,} 

- S,,(cos (a, - 8,) + (yhl - 1) sin 0, cosec a,)], 

where /3 is the downstream shock angle, (dp/d8), gives the initial variation of 
p with 8 behind the shock for this angle, and (dO/dZ), the variation of 8 with length 
I along the shock. 

S334, a,,, and S,, can be related by the geometry of the figure. It is convenient 
to define a non-dimensional length scale in terms of the upstream properties 
(subscript 0 )  so that length along the shock is given in terms of L,, where 

L, = ~ o B ~ Z / p o v o .  (21) 

Then, substituting for j, from equation (16), we obtain 

[{(dp/dO),/3yp} sin 2a + t ana  cotp] dB/dL, 

= - (cr/cr,) sin /3 sin 8 cosec (/3 + 8 )  

x [sin (a +p) cosec 2a (cos(a + 6) - (yh - 1) sin 0 cosec a} 

-sin (a  -p)  cosec 2a{cos (a  - 8) + (yh - 1) sin 8 cosec a}], ( 2 2 )  

where the subscript 1 has been dropped for the state immediately behind the 
shock. Thus, given sufficient information on shock properties, we may calculate 
d6jdLs at the apex of a wedge and hence determine the shock curvature dp,/dL, 
where Po is the shock angle relative to the upstream flow. Further analysis 
readily gives the pressure and, with equation (IS), the velocity variation on the 
wedge surface. A similar method can be used when the flow upstream of the shock 
does not conduct electricity and the magnetic field is no longer parallel. 

When 6 + 0, the shock is weak and p -+ a --f a,. Using the known Mach wave 
relation for (dplde), we obtain 

2(ae/a~,)~_,,+ 0 cos a,. 

For linearized flow over a slender wedge, the effect of magnetic forces is small up 
to moderate values of L,, and we may integrate. Thus the flow angle immediately 
behind a Mach wave is given by 

8 = 8, exp ( - &L, cos a,). (23) 

The wave decays exponentially, and weak shocks will tend to curve towards 
the wedge. Withincreasing 6, the contribution to equation (22) from the 32 charac- 
teristic increases and the contribution from the 24 characteristic can change 
sign. Thus for a given upstream flow state there will at least be one wedge 
angle for which d8/dLs = 0, and flow behind the shock is initially rectilinear. 
It is easily verified that vorticity in this case corresponds to that given by 
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equation (12) when there is zero shock curvature. If we assume that the 'Crocco ' 
point of ordinary gasdynamics occurs when the flow Mach number behind the 
shock is less than unity, the term in brackets on the left-hand side of equation 
(22) is positive while characteristics exist. Then for large wedge angles dBldL, 
becomes positive and the shock curves away from the wedge. The analysis of 

0.30 - 

0.25 - 

0.20 - 

0.15 - 

0.10 - 

1 daldL u 

/ 

I I I I I I I 
50 loo 15-o 200 25O 30" 35O - 0.05 I, 

Wodge semi-angle ( Sl) 

FIGURE 3. Variation of properties a t  the apex of a wedge. 

Barthel & Lykoudis (1961) showed a similar result for strong shocks in the flow 
over cones. 

Some calculations have been made for a gas with an equation of state given by 
equation (lo), p / p  constant, with cr constant. The variation of dB/dL,  and 
dp,/dL, with wedge angle for a free-stream Mach number of 2 is shown in figure 3. 
Also included in figure 3 is the rate of change of Mach angle with length along 
the wedge surface, daldL,, where L, has the same non-dimensional form as L,. 
The flow Mach number decreases along the wedge, and for a considerable range 
of wedge angles this is a more significant effect than the shock curvature. 
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properties is found to have the simple form. 
In  general, the condition for zero shock curvature in terms of the free-stream 

cos 2po = gcos 2a0 - l), 

when the equation of state has the form constant. 

5. The strong-field shock 
To investigate the subsequent development of the flow behind an attached 

shock, we take a particular case of the inverse problem where the shock wave 
position is assumed and the body shape is to be determined. Suppose that the 
shock is plane. For a shock-oriented co-ordinate system (x3, y,, z),  we have 
a/ay, = 0, and the subsequent flow is one-dimensional After the initial deflexion 
of the flow, the effect of the magnetic force must be to re-align the streamlines 
with the field lines’ since there can be no pressure gradient to balance forces in 
the y,-direction. The flow behaviour is indicated schematically in figure 4. A par- 
ticular streamline is chosen to define the body shape on one side of the apex. 
A mirror image completes the flow pattern for a symmetrical body. 

\F 
FIGURE 4. The strong-field shock. 

Let the upstream flow be at  state 0, the flow immediately after the shock be 
at state 1, and state 2 occur where the flow and magnetic field are again parallel. 
Mass conservation between 0 and 2 requires that 

POVO = P2W2-  (35) 

By conservation of momentum in a direction parallel to the magnetic field lines 
(i.e. perpendicdar to the magnetic force), we have 

Po”; +PO = P 2 4  + P2. (26) 

Thus, with constant stagnation enthalpy, states 0 and 2 are related in the 
same way as the states on either side of a shock in ordinary gasdynamics which 
is normal to the stream. It then follows that the Mach number at  state 2 is less 
than unity. We shall show that it is not necessary for the transition to be initiated 
by a shock, and flow from state 0 to state 2 is always possible whatever angle the 
x,-direction makes with the field lines provided the Mach number at state 0 
is greater than unity. The transition 03 is in fact a slow magnetogasdynamic 
shock in the limit b/n -+ co, and the flow pattern indicated in figure 4 is a typical 
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shock structure for weak electrical conductivity.? The Mach number conditions 
discussed above are equivalent to the usual conditions for the ratio of normal 
velocity components to slow wave speed. 

We shall refer to the complete transition 02 as ‘the strong-field shock’ in 
contradistinction to the ordinary gasdynamic shocks. The one-dimensional 
process which forms the structure is referred to as the ‘strong-field Ohmic dissipa- 
tion process ’. It is related to processes in ordinary gasdynamics studied by Sher- 
cliff (1958). We shall use the same symbolism as Shercliff and quote freely from 
his results. The terms subsonic and supersonic will refer to states where 
v, < a and v, > a, respectively. 

Conservation of mass momentum, and energy within the strong field shock 
gives 

(27) 

(28) 

(29) 

pv, = G, 

/XJ: +JJ = P = FO- (B,/B,) Gv,, 

2 x -  ZVY, 

where G, Fo and Ho are constants fixed by the end states. For thermodynamic 
equilibrium the entropy variation is related to variations in F and H by 

h+lv2 - H = HO-1 2 

T d s  = dH-dF/p.  (30) 

The strong-field Ohmic dissipation process has 4 H and s all varying, but by 
equations (28) and (29) 

(PO-3’)2 = 2G2(B,/B,,) (HO- H), (31) 

which is a parabola in an ( F ,  H)-plane. Given values of G, F and H may define 
the end states of an ordinary gasdynamic shock with one state subsonic and the 
other supersonic, Alternatively, they may define a single subsonic state or no 
state. Each point on the parabola can not correspond to more than two flow 
states. In  the subsequent discussion we shall indicate the extent of the regions 
of the (F ,  H)-plane where two states, one state or no state are possible. Figure 5 
illustrates these properties. 

It is well known (e.g. see Shercliff 1958) that H has its maximum value in a 
Rayleigh-line process (G and F constant) at the sonic point ux = a, and only one 
such point occurs. Similarly for the Fanno line (G and H constant) F is a minimum 
at vx = a. The locus of sonic states in the ( F ,  23)-plane then represents a boundary 
below and to the right of which no flow state is possible. From equations (28), 
(29), (6) and with G constant the slope of the sonic line is given by 

( W W v y g = a  = (Yh - 1) PIYh. (32) 

For a perfect gas the right-hand side of equation (32) is readily found to be pro- 
portional to 1/F, so that the sonic line is then parabolic. 

If we assume p + 0 and h + 0 represents the upper limit of supersonic states, 
equations (27), (28) and (29) give for this limit 

(F2)p, h + 0 + 2G2H, (33) 

t This structure has been shown by Kulikovskii & Liubimov (1961), but their results 
are mistakenly presented as being true for Ohmic diffusion small in comparison to viscous 
diffusion instead of the reverse. 



588 M .  D. Cowley 

which is again parabolic, and will be termed the hypersonic line. The slope of the 
hypersonic line can be expressed as 

W/W,, h+O = P (34) 

We take the limit of subsonic states to be given by v, --f 0, p -+ 00. If h -+ 0 as 
p -+ co with p finite, the P-axis forms part of the subsonic limit, and, if p + co as 
p + co with h non-zero, the remainder of the limit is given as P + 03 for all H. 

FIGURE 5. The ( F ,  23)-plane for one-dimensional processes with G = const. 

Lines of constant density and hence of constant v, have a slope given by 

They each touch the sonic line once only, provided that the thermodynamic state 
is uniquely determined by p and a. The sonic line is their envelope. Following a 
line of constant p as H and P increase, comparison of equations (34) and (35) 
shows that the line starts at the hypersonic limit and traverses a series of super- 
sonic states until the point of contact with the sonic line is reached. Beyond the 
sonic line the states are subsonic. The direction of increasingp in the (F ,  H)-plane 
can be inferred from the known properties of the Fanno line: 

( a F / a ~ ) ~ ~  > 0 when v, < a, (aP/ap)oH < 0 when v, > a. 

For perfect gases equation (35)  shows that the lines of constant density are 
straight. 

It is worth noting that there are many one-dimensional processes in magneto- 
gasdynamics which can be easily represented in the (P, H)-plane. For example, 
the general Ohmic-dissipation line where conditions are the same as in the 
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present case except that the limit b/a -+ 00 is no longer taken and B, may vary 
is found to be also parabolic. Channel flow where B, = 0, By = const. (strong- 
field assumption), v, = 0, and the electric field has a uniform z-component, is 
represented by a straight line. 

Flow behaviour on the strong-field Ohmic-dissipation parabola is most easily 
discussed in terms of entropy and the quantity 

K = V ,  B,/v, B,, (36) 

which measures how far the direction of the streamlines diverges from that of the 
field lines. The slope of the Ohmic-dissipation line can be expressed as 

(aF/aH)ohmic = PF- (37) 

The following argument will depend largely on a study of points where the 
Ohmic-dissipation line cuts one of the limit lines of the (F, H)-plane. Conditions 
are imposed by the relative slopes of the lines. For easy reference table 1 sum- 
marizes equations (32), (34), (35) ad (37) and figure 6, where some completed 
forms of the Ohmic-dissipation line are shown, may be also consulted. 

Ohmic- Sonic Hypersonic Constant 
dissipation line line density 

Slopc line v, = a p + O , h i - O  line 

P 
Y* 

Yh 

TABLE 1 

P P 
Yh 

Prom equations (30) and (37), we have 

Then s is stationary when K = 1 or when H is stationary provided that K =# 0. 
At a point where the Ohmic-dissipation line cuts the sonic line, there can be ,a 
continuous succession of states from subsonic to supersonic with H ,  and hence s, 
stationary where v, = a. H has a maximum value when H = Ho, but K = 0, 
and in general s is not stationary. There can not be more than two states a t  
which K = 1, the end states of a strong field shock. It is easily shown that 

The nature of the entropy extrema can be established from equation (39), table 1, 
and general properties of the end states of strong field shocks. A summary is given 
in table 2 .  The nature of difficult points, as when v, = a and K = yh/(yh-  I ) ,  
can usually be inferred from the geometry of the (P, H)-plane. 

On the Ohmic-dissipation line, states where P > FO have vy < 0. Since 
vyo > vy, > 0, we have Po < F2 < Po. Suppose state 2 is given and consider the 
range F2 < P < PO. The Ohmic-dissipation line must lie above the sonic line for 
the whole of this range, for, if it did not, an intersection with H maximum, s 
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maximum, and a continuous succession of subsonic states from F = F, to the 
point of intersection must occur. Since s already has a maximum at state 2,  
and there can be no intermediate point where s is a minimum, the intersection is 
not possible, and there is a continuous succession of subsonic states between 
F = F, and F = PO. Since K = 0 at F = FO and K = 1 at state 2, we have 
K < 1 for the whole range, and there will be some subsonic points in the neighbour- 
hood of F = Fz, but F < FZ, where K > 1. At a point on the Ohmic-dissipation 
line where there is a supersonic state, the density and hence K are smaller for 
the supersonic state than for the subsonic state. Hence for supersonic states in 
the range Fz < F < FO, we have K < 1, and by table 1 the slope of the Ohmic- 
dissipation line at any hypersonic state is greater than the slope of the hyper- 
sonic line. It follows that there can be just one hypersonic state if state 2 lies 
below the hypersonic line, and the point where F = Po lies above it. 

Consider now the range F < F,, and suppose that the Ohmic-dissipation line 
cuts the sonic line. If there is more than one intersection, let the one with the 
greatest value of F be a t  F = F,. There can only be an intersection with the hyper- 
sonic line for the range F, < F < F, if state 2 lies above it, since both lines are 
parabolic and have parallel axes. Then at the hypersonic state K < 1.  There is a 
continuous variation of K from K > 1 to K < 1 following the subsonic states in 

0 ,  > a, state 0 - s max. 
K = l  t i ,  < a, v:+z?: > a2, state 0 - s min. 

s max. 

TABLE 2. Entropy extrema on the Ohmic-dissipation line, R > 0 

1 3 ,  < a, v: + 21: < a2, state 2 - 

the neighbourhood of state 2 to sonic at F = F, and the supersonic states back 
to the hypersonic line or to F = Fz. Hence state 0, where K = 1, must lie in the 
range F, < F < Fz. At F = Fs, we have K > 1 if state 0 is supersonic, so that from 
table 2,  s is aminimum. The result is consistent with s being a maximum at state 2 
and a maximum at state 0. Similarly, if state 0 is subsonic, we have K < 1, and 
s is a maximum at F = Fs. 

Suppose that the Ohmic-dissipation line does not cut the sonic line at  all, 
but does cut the hypersonic line (necessarily at two points). At one intersection 
we have K > 1 and a t  the other K < 1 by table 1. Between the intersections there 
is a range o f  supersonic states at one o f  which K = 1 for state 0. 

If the Ohmic-dissipation line lies wholly above the hypersonic line, we only 
have subsonic states to consider. As H -+ 0 for PO, we have K --f co. Hence we have 
K > 1 in the whole range o f  possible states with F < F,. There can be no state 0. 
The limit to possible strong field shocks is given when the Ohmic-dissipation line 
just touches the hypersonic line. At the point of contact K = 1 for the hypersonic 
state (table 1) so that state 0 lies on the hypersonic line and state 2 above it. 
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The possible forms of the Ohmic-dissipation line when the end states of a 
strong field shock occur are shown in figure 6. The cases where there is no inter- 
section with the sonic line (figure 6a)  and where state 0 is subsonic (figure 6c) 
necessarily occur in practice. The case where there is an intersection with the 
sonic line but state 0 is supersonic (figure 6 b )  appears to be reasonable by virtue 
of the following argument. The strong field shock could have state 0 exactly 
sonic. The Ohmic-dissipation line then cuts the sonic line at  a non-zero angle. 

H 

H 

HO H 
(c) 

FIGURE 6. Strong-field shock transitions on the Ohmic-dissipation line. 
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A small perturbation of state 0 so that vxo/a increases will not alter the position of 
the Ohmic-dissipation line significantly, and the intersection will remain. 

For Ohmic dissipation the entropy increases in the direction of positive mass 
flow. This fact provides a criterion by which possible transitions can be deter- 
mined. If state 0 is subsonic, one-dimensional flow from 0 to 2 via the subsonic 
states is possible. If state 0 is supersonic, s has a maximum at state 0. However, 
an initial transition to the subsonic state 1 at P = Po, H = H,, can be made by an 
ordinary gasdynamic shock, and a continuous one-dimensional flow from state 1 
to state 2 is then possible. Thus for the present purposes it is only the flow be- 
haviour at the subsonic states of the Ohmic-dissipation line which is of interest. 
However, it  is worth noting that flow on other parts of the strong-field Ohmic- 
dissipation line could be realized in channel flow. Also, if a one-dimensional 
flow is initiated by an ‘ionizing’ shock with a non-conducting upsteam flow, the 
initial conditions could be very different from those of a strong-field shock. 

5. General properties of the strong-field shock transition 
For the one-dimensional flow on the Ohmic-dissipation line which forms part 

or all of the strong field shock structure P increases and hence by equation (28) 
vy decreases continuously. The variation of w, and hence of p is not easily deter- 
mined. The difficulty arises from the fact that the Ohmic-dissipation line may 
touch lines of constant density, and points where p is stationary 0ccur.T For a 
perfect gas the lines of constant density are straight, and the sonic line is para- 
bolic in the (P, H)-plane. Two common tangents to the Ohmic-dissipation line 
and the sonic line are possible for the configuration of figure 6 a. The points of con- 
tact with the Ohmic-dissipation line define a point of minimum density for a sub- 
sonic state and a point of maximum density for a supersonic state provided that the 
point lies below the hypersonic line. At these points we have K > 1 by table 1, so 
that the minimum occurs where F < P2 and the maximum where F < Po. That the 
density minimum certainly occurs within some strong field shock transitions can 
be inferred from the case where state 0 lies on the hypersonic line. Forperfect gases 
the density ratio across the initial gasdynamic shock is the same as the density 
ratio across the whole strong field shock. That it does not always occur for the 
configuration of figure 6a is easily inferred from the case where the Ohmic dissipa- 
tion line touches the sonic line. 

Figures 7a,  b and c show the variation of vy with wZ for the transitions of 
figures 6a,  b and c. We have taken the typical density variation of a perfect gas. 
Only the transitions which begin with a gasdynamic shock are of interest in the 
context of flow over bodies with a sharp apex. 

An indication of the streamline shape, and hence of the body shape is given by 
K ,  and lines of constant K in the (wy, v,)-plane are straight lines through the 
origin. The body thickness increases with distance from the apex. If we take the 
case of a very weak initial gasdynamic shock, it is clear that (aK/aw,) < 0 in the 
vicinity of state 1, and the slope of the body surface increases initially with dis- 
tance from the apex, a result which may be compared with that of $4  where a 

t The author is indebted to Dr J. A. Shercliff for showing that these points exist. 
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weak shock a t  the apex of a wedge tends to curve towards the body surface. When 
the initial shock is almost normal to the stream, state 1 is close to state 2, 
(aK/av,) > 0, and the slope of the body decreases continuously. 

L’Y 

( c )  V X  

FIQURE 7. Strong field shock transitions variation of vY with ziz. The arrows 
indicate the direction of increasing entropy. 

The momentum equation for the ys direction is 

G(dv,/dxs) = jzBz. (40) 

Ohm’s law can be used to eliminate j ,  from equation (40), and in principle the 
resulting equation may be integrated to find the detailed flow behaviour in the 
physical plane. Clearly C, based on shock thickness is of order unity. 

The currents within the strong field shock transition are equivalent to a sheet 
current with density given by 

J = j,dX,. so’ 
Under purely one-dimensional conditions this current gives rise t o  a slight per- 
turbation of the field a t  state 2 if b/a is large but not infinite. The field is deflected 
towards the xs direction, a result familiar in the theory of slow shocks. Using 
equation (40) we can obtain 1 $ 1  = $ ( I / € -  l), 

where 6 is the density ratio of a gasdynamic shock normal to the free stream. How- 
ever, in the context of flow over bodies with a sharp apex we may note that field 
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perturbations will extend upstream of an attached shock to satisfy field conditions 
at the body. 

For a gas with p / p  constant, as in equation (lo), and with constant electrical 
conductivity the strong-field shock analysis is greatly simplified. We shall 
summarize the more interesting results. The general shape of the Ohmic- 
dissipation line in the (wy, v,)-plane is always similar to  that of figures 7 b and c. 
There are no points at which the density is stationary. There is just one point 
at which K is stationary, and K then has a maximum value. This point may be 
within a strong field shock transition, and w: + wi > a2 there. The slope of a body 

10’ 20’ 30 ’ 40’ 50’ 60 i0 ~ 80’ 90” 

FIGURE 8. Displacement of the streamlines in strong field shocks. 

shock angle -Po 

surface shaped to fit the streamlines of a strong field shock increases continuously 
to the point where maximum K is reached and then decreases if the initial 
gasdynamic shock is weak. The slope of the body surface decreases continuously 
if the initial gasdynamic shock is strong. With K stationary at  state 1, the body 
surface has zero curvature initially, and the appropriate condition is the same 
as that for zero shock curvature at the apex of a wedge, i.e. equation (24). 

The shock thickness is found to be logarithmically infinite whenplp is constant, 
but the displacement of the streamlines in a direction perpendicular to the field 
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lines t,, is in general finite. For a symmetrical body t ,  is half the thickness of a 
body shaped to fit the streamlines of two strong field shocks (see figure 4). Some 
results for t ,  have been computed and are shown in figure 8. It is convenient to use 
a non-dimensional thickness parameter, given by T, = gBi t,/p,v,, where values 
at state 0 are used. T, is plotted against strong field shock angle Po for given 
upstream Mach number M,. When Po is less than the upstream Mach angle, there 
is no initial gasdynamic shock, and it is found that T, -+ 00 as Po + 0, the velocity 
in a direction perpendicular to the field lines being reduced to a small drift. 
T, is of order ME since a more natural value of density in the thickness para- 

meter would be p, = p, /N; .  The strong field shock thickness is of order t2 /N; ,  
so that the concept of a thin shock layer on the forward part of a body shaped to 
fit the streamlines of a strong-field shock is valid for N;  -+ m. Note that there 
is a pressure difference across the Newtonian layer, and the body has the form of 
a wedge initially. 

6. Discussion of the flow over bodies with a sharp apex 
In  the previous sections we have seen how the strong field shock gives a solu- 

tion to the body-shape problem for a plane gasdynamic shock at the apex. How- 
ever, the results do not imply that, given an appropriate body shape, the strong 
field shock solution occurs in practice. The following physical arguments suggest 
that the solution is not likely to be realistic. The strong-field shock can extend 
an infinite distance in a lateral direction, and flow behaviour in the outer regions 
should approach the typical behaviour expected for infinite conductivity. As 
mentioned in 0 1, Lighthill (1960) showed that the propagation of disturbances is 
then'effectively that of sound waves in rigid magnetic channels. Thus in any start- 
ing process we would not expect a build up of strong perturbations in the outer 
flow regions by virtue of disturbances originating at the body. On the whole i t  
seems reasonable to suppose that there will be a tendency towards reduction in 
lateral disturbance for the magnetogasdynamic flows in comparison to flows in 
ordinary gasdynamics. 

Consider now a body which terminates in a flat base. Between apex and base 
the body surface is chosen to fit the streamlines of part of the strong field shock 
solution. As the position of the base approaches the apex C,, based on maximum 
body thickness, tends to zero. In  the limit the flow pattern will be the same as 
in ordinary gasdynamics and under suitable conditions could have a Mach 
number greater than unity throughout. At least for low values of C,, it is prob- 
able that the Mach number could remain greater than unity. We are then justi- 
fied in taking part of the strong field shock analysis for a solution to the hyper- 
bolic flow over the forward part of the body, since sufficient boundary conditions 
are satisfied. The influence of the sharp corner provided by the base cannot extend 
further upstream than the first Mach line emanating from the corner. Hence a 
part of the strong field shock solution is valid for a region bounded by this Mach 
line, the body surface, and the initial gasdynamic shock attached a t  the apex. 
An investigation of the subsequent flow pattern is beyond the scope of this paper, 
although in principle the method of characteristics may be used. In  the immediate 

38-0 
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neighbourhood of the corner the flow behaviour will tend to that of a Prandtl- 
Meyer expansion, since the scale may be reduced to a point where the magnetic 
forces can be neglected in describing the behaviour. However, without a full 
treatment of the subsequent flow we cannot say for certain at what value of 
C, the type of flow pattern described might break down. Clearly an upper limit 
to this value of C,, is given by the condition that the Mach number immediately 
before the corner is just unity with the assumed flow pattern. For greater values 
of C,, the condition that the Mach number remains unity at the corner, as in 
transonic theory of ordinary gasdynamics, will certainly require a radical change. 

As a final calculation for a gas with p / p  constant, we take the case of a shock 
angle of 52" 14' with an upstream Mach number of 2. The initial streamline 
curvature of a stong field shock is then zero. At the point where the Mach number 
is unity the streamline displacement t is given by aB$t/p,w, = 0.64. The inclina- 
tion of the streamlines to the free stream direction is 24"53' at the apex (see 
figure 3) and 23" 6' at the point where the Mach number is unity. In  this case 
the body shape is very nearly that of a wedge over the whole range for which the 
strong field shock solution is possibly valid. This does not imply that a constant- 
area stream-tube approximation should provide a reasonable basis for calcula- 
tion since small changes of area can have a significant effect when the Mach 
number is close to unity. 

In  the present paper we have explored some aspects of flow in which a shock 
remains attached at the apex of a body It is clear that the value of C,, based on 
body thickness, cannot exceed a certain value for any particular body shape, if 
the assumption of shock attachment is to be still valid. Although the study 
may begin to give some idea of the values of C, for which radical changes in 
flow pattern may be expected, no definite criteria have emerged. It is hoped that 
further discussion of these problems will be stimulated. For the corresponding 
case of axially symmetric flow there is some hope of experimental verification, 
and the break-down of a certain type of flow pattern should be easily observed. 
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